Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Designing Tractable Piecewise Affine Policies for Multi-Stage Adjustable Robust Optimization (2207.00403v3)

Published 1 Jul 2022 in math.OC

Abstract: We study piecewise affine policies for multi-stage adjustable robust optimization (ARO) problems with non-negative right-hand side uncertainty. First, we construct new dominating uncertainty sets and show how a multi-stage ARO problem can be solved efficiently with a linear program when uncertainty is replaced by these new sets. We then demonstrate how solutions for this alternative problem can be transformed into solutions for the original problem. By carefully choosing the dominating sets, we prove strong approximation bounds for our policies and extend many previously best-known bounds for the two-staged problem variant to its multi-stage counterpart. Moreover, the new bounds are - to the best of our knowledge - the first bounds shown for the general multi-stage ARO problem considered. We extensively compare our policies to other policies from the literature and prove relative performance guarantees. In two numerical experiments, we identify beneficial and disadvantageous properties for different policies and present effective adjustments to tackle the most critical disadvantages of our policies. Overall, the experiments show that our piecewise affine policies can be computed by orders of magnitude faster than affine policies, while often yielding comparable or even better results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube