Papers
Topics
Authors
Recent
2000 character limit reached

Black-box Generalization of Machine Teaching (2206.15205v2)

Published 30 Jun 2022 in cs.LG

Abstract: Hypothesis-pruning maximizes the hypothesis updates for active learning to find those desired unlabeled data. An inherent assumption is that this learning manner can derive those updates into the optimal hypothesis. However, its convergence may not be guaranteed well if those incremental updates are negative and disordered. In this paper, we introduce a black-box teaching hypothesis $h\mathcal{T}$ employing a tighter slack term $\left(1+\mathcal{F}{\mathcal{T}}(\widehat{h}_t)\right)\Delta_t$ to replace the typical $2\Delta_t$ for pruning. Theoretically, we prove that, under the guidance of this teaching hypothesis, the learner can converge into a tighter generalization error and label complexity bound than those non-educated learners who do not receive any guidance from a teacher:1) the generalization error upper bound can be reduced from $R(h*)+4\Delta_{T-1}$ to approximately $R(h{\mathcal{T}})+2\Delta_{T-1}$, and 2) the label complexity upper bound can be decreased from $4 \theta\left(TR(h{*})+2O(\sqrt{T})\right)$ to approximately $2\theta\left(2TR(h{\mathcal{T}})+3 O(\sqrt{T})\right)$. To be strict with our assumption, self-improvement of teaching is firstly proposed when $h\mathcal{T}$ loosely approximates $h*$. Against learning, we further consider two teaching scenarios: teaching a white-box and black-box learner. Experiments verify this idea and show better generalization performance than the fundamental active learning strategies, such as IWAL, IWAL-D, etc.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.