Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Learning in Dynamically Changing Environments (2302.00103v1)

Published 31 Jan 2023 in cs.LG

Abstract: We study the problem of online learning and online regret minimization when samples are drawn from a general unknown non-stationary process. We introduce the concept of a dynamic changing process with cost $K$, where the conditional marginals of the process can vary arbitrarily, but that the number of different conditional marginals is bounded by $K$ over $T$ rounds. For such processes we prove a tight (upto $\sqrt{\log T}$ factor) bound $O(\sqrt{KT\cdot\mathsf{VC}(\mathcal{H})\log T})$ for the expected worst case regret of any finite VC-dimensional class $\mathcal{H}$ under absolute loss (i.e., the expected miss-classification loss). We then improve this bound for general mixable losses, by establishing a tight (up to $\log3 T$ factor) regret bound $O(K\cdot\mathsf{VC}(\mathcal{H})\log3 T)$. We extend these results to general smooth adversary processes with unknown reference measure by showing a sub-linear regret bound for $1$-dimensional threshold functions under a general bounded convex loss. Our results can be viewed as a first step towards regret analysis with non-stationary samples in the distribution blind (universal) regime. This also brings a new viewpoint that shifts the study of complexity of the hypothesis classes to the study of the complexity of processes generating data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Changlong Wu (10 papers)
  2. Ananth Grama (31 papers)
  3. Wojciech Szpankowski (36 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.