Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Value Iteration is Optic Composition (2206.04547v2)

Published 9 Jun 2022 in math.CT and math.OC

Abstract: Dynamic programming is a class of algorithms used to compute optimal control policies for Markov decision processes. Dynamic programming is ubiquitous in control theory, and is also the foundation of reinforcement learning. In this paper, we show that value improvement, one of the main steps of dynamic programming, can be naturally seen as composition in a category of optics, and intuitively, the optimal value function is the limit of a chain of optic compositions. We illustrate this with three classic examples: the gridworld, the inverted pendulum and the savings problem. This is a first step towards a complete account of reinforcement learning in terms of parametrised optics.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.