Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Open Challenges in Developing Generalizable Large Scale Machine Learning Models for Catalyst Discovery (2206.02005v2)

Published 4 Jun 2022 in physics.chem-ph and cond-mat.mtrl-sci

Abstract: The development of machine learned potentials for catalyst discovery has predominantly been focused on very specific chemistries and material compositions. While effective in interpolating between available materials, these approaches struggle to generalize across chemical space. The recent curation of large-scale catalyst datasets has offered the opportunity to build a universal machine learning potential, spanning chemical and composition space. If accomplished, said potential could accelerate the catalyst discovery process across a variety of applications (CO2 reduction, NH3 production, etc.) without additional specialized training efforts that are currently required. The release of the Open Catalyst 2020 (OC20) has begun just that, pushing the heterogeneous catalysis and machine learning communities towards building more accurate and robust models. In this perspective, we discuss some of the challenges and findings of recent developments on OC20. We examine the performance of current models across different materials and adsorbates to identify notably underperforming subsets. We then discuss some of the modeling efforts surrounding energy-conservation, approaches to finding and evaluating the local minima, and augmentation of off-equilibrium data. To complement the community's ongoing developments, we end with an outlook to some of the important challenges that have yet to be thoroughly explored for large-scale catalyst discovery.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube