Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

A Machine Learning and Explainable AI Framework Tailored for Unbalanced Experimental Catalyst Discovery (2407.18935v1)

Published 10 Jul 2024 in physics.chem-ph and cs.LG

Abstract: The successful application of ML in catalyst design relies on high-quality and diverse data to ensure effective generalization to novel compositions, thereby aiding in catalyst discovery. However, due to complex interactions, catalyst design has long relied on trial-and-error, a costly and labor-intensive process leading to scarce data that is heavily biased towards undesired, low-yield catalysts. Despite the rise of ML in this field, most efforts have not focused on dealing with the challenges presented by such experimental data. To address these challenges, we introduce a robust machine learning and explainable AI (XAI) framework to accurately classify the catalytic yield of various compositions and identify the contributions of individual components. This framework combines a series of ML practices designed to handle the scarcity and imbalance of catalyst data. We apply the framework to classify the yield of various catalyst compositions in oxidative methane coupling, and use it to evaluate the performance of a range of ML models: tree-based models, logistic regression, support vector machines, and neural networks. These experiments demonstrate that the methods used in our framework lead to a significant improvement in the performance of all but one of the evaluated models. Additionally, the decision-making process of each ML model is analyzed by identifying the most important features for predicting catalyst performance using XAI methods. Our analysis found that XAI methods, providing class-aware explanations, such as Layer-wise Relevance Propagation, identified key components that contribute specifically to high-yield catalysts. These findings align with chemical intuition and existing literature, reinforcing their validity. We believe that such insights can assist chemists in the development and identification of novel catalysts with superior performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.