Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

GPU-Accelerated Approximate Kernel Method for Quantum Machine Learning (2206.01580v2)

Published 3 Jun 2022 in physics.chem-ph

Abstract: Conventional kernel-based machine learning models for ab initio potential energy surfaces, while accurate and convenient in small data regimes, suffer immense computational cost as training set sizes increase. We introduce QML-Lightning, a PyTorch package containing GPU-accelerated approximate kernel models, which reduces the training time by several orders of magnitude, yielding trained models within seconds. QML-Lightning includes a cost-efficient GPU implementation of FCHL19, which together can yield energy and force predictions with competitive accuracy on a microsecond-per-atom timescale. Using modern GPU hardware, we report learning curves of energies and forces as well as timings as numerical evidence for select legacy benchmarks from atomisitic simulation including QM9, MD-17, and 3BPA.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.