Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deepfake Caricatures: Amplifying attention to artifacts increases deepfake detection by humans and machines (2206.00535v3)

Published 1 Jun 2022 in cs.CV, cs.HC, and cs.SI

Abstract: Deepfakes pose a serious threat to digital well-being by fueling misinformation. As deepfakes get harder to recognize with the naked eye, human users become increasingly reliant on deepfake detection models to decide if a video is real or fake. Currently, models yield a prediction for a video's authenticity, but do not integrate a method for alerting a human user. We introduce a framework for amplifying artifacts in deepfake videos to make them more detectable by people. We propose a novel, semi-supervised Artifact Attention module, which is trained on human responses to create attention maps that highlight video artifacts. These maps make two contributions. First, they improve the performance of our deepfake detection classifier. Second, they allow us to generate novel "Deepfake Caricatures": transformations of the deepfake that exacerbate artifacts to improve human detection. In a user study, we demonstrate that Caricatures greatly increase human detection, across video presentation times and user engagement levels. Overall, we demonstrate the success of a human-centered approach to designing deepfake mitigation methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.