Papers
Topics
Authors
Recent
2000 character limit reached

Long-Tailed Learning Requires Feature Learning (2205.14553v3)

Published 29 May 2022 in cs.LG

Abstract: We propose a simple data model inspired from natural data such as text or images, and use it to study the importance of learning features in order to achieve good generalization. Our data model follows a long-tailed distribution in the sense that some rare subcategories have few representatives in the training set. In this context we provide evidence that a learner succeeds if and only if it identifies the correct features, and moreover derive non-asymptotic generalization error bounds that precisely quantify the penalty that one must pay for not learning features.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.