Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

RIAV-MVS: Recurrent-Indexing an Asymmetric Volume for Multi-View Stereo (2205.14320v4)

Published 28 May 2022 in cs.CV

Abstract: This paper presents a learning-based method for multi-view depth estimation from posed images. Our core idea is a "learning-to-optimize" paradigm that iteratively indexes a plane-sweeping cost volume and regresses the depth map via a convolutional Gated Recurrent Unit (GRU). Since the cost volume plays a paramount role in encoding the multi-view geometry, we aim to improve its construction both at pixel- and frame- levels. At the pixel level, we propose to break the symmetry of the Siamese network (which is typically used in MVS to extract image features) by introducing a transformer block to the reference image (but not to the source images). Such an asymmetric volume allows the network to extract global features from the reference image to predict its depth map. Given potential inaccuracies in the poses between reference and source images, we propose to incorporate a residual pose network to correct the relative poses. This essentially rectifies the cost volume at the frame level. We conduct extensive experiments on real-world MVS datasets and show that our method achieves state-of-the-art performance in terms of both within-dataset evaluation and cross-dataset generalization. Code available: https://github.com/oppo-us-research/riav-mvs.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.