Papers
Topics
Authors
Recent
2000 character limit reached

EvoVGM: a Deep Variational Generative Model for Evolutionary Parameter Estimation (2205.13034v2)

Published 25 May 2022 in cs.LG and q-bio.PE

Abstract: Most evolutionary-oriented deep generative models do not explicitly consider the underlying evolutionary dynamics of biological sequences as it is performed within the Bayesian phylogenetic inference framework. In this study, we propose a method for a deep variational Bayesian generative model (EvoVGM) that jointly approximates the true posterior of local evolutionary parameters and generates sequence alignments. Moreover, it is instantiated and tuned for continuous-time Markov chain substitution models such as JC69, K80 and GTR. We train the model via a low-variance stochastic estimator and a gradient ascent algorithm. Here, we analyze the consistency and effectiveness of EvoVGM on synthetic sequence alignments simulated with several evolutionary scenarios and different sizes. Finally, we highlight the robustness of a fine-tuned EvoVGM model using a sequence alignment of gene S of coronaviruses.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.