Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised language models for disease variant prediction (2212.03979v1)

Published 7 Dec 2022 in cs.LG and q-bio.GN

Abstract: There is considerable interest in predicting the pathogenicity of protein variants in human genes. Due to the sparsity of high quality labels, recent approaches turn to \textit{unsupervised} learning, using Multiple Sequence Alignments (MSAs) to train generative models of natural sequence variation within each gene. These generative models then predict variant likelihood as a proxy to evolutionary fitness. In this work we instead combine this evolutionary principle with pretrained protein LLMs (LMs), which have already shown promising results in predicting protein structure and function. Instead of training separate models per-gene, we find that a single protein LM trained on broad sequence datasets can score pathogenicity for any gene variant zero-shot, without MSAs or finetuning. We call this unsupervised approach \textbf{VELM} (Variant Effect via LLMs), and show that it achieves scoring performance comparable to the state of the art when evaluated on clinically labeled variants of disease-related genes.

Summary

We haven't generated a summary for this paper yet.