Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Locality of percolation for graphs with polynomial growth (2205.10253v1)

Published 20 May 2022 in math.PR and math.GR

Abstract: Schramm's Locality Conjecture asserts that the value of the critical percolation parameter $p_c$ of a graph satisfying $p_c<1$ depends only on its local structure. In this note, we prove this conjecture in the particular case of transitive graphs with polynomial growth. Our proof relies on two recent works about such graphs, namely supercritical sharpness of percolation by the same authors and a finitary structure theorem by Tessera and Tointon.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.