Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Enhancement Transformer for Action Segmentation (2205.09445v1)

Published 19 May 2022 in cs.CV

Abstract: Temporal convolutions have been the paradigm of choice in action segmentation, which enhances long-term receptive fields by increasing convolution layers. However, high layers cause the loss of local information necessary for frame recognition. To solve the above problem, a novel encoder-decoder structure is proposed in this paper, called Cross-Enhancement Transformer. Our approach can be effective learning of temporal structure representation with interactive self-attention mechanism. Concatenated each layer convolutional feature maps in encoder with a set of features in decoder produced via self-attention. Therefore, local and global information are used in a series of frame actions simultaneously. In addition, a new loss function is proposed to enhance the training process that penalizes over-segmentation errors. Experiments show that our framework performs state-of-the-art on three challenging datasets: 50Salads, Georgia Tech Egocentric Activities and the Breakfast dataset.

Citations (21)

Summary

We haven't generated a summary for this paper yet.