Papers
Topics
Authors
Recent
2000 character limit reached

Unifying the Convergences in Multilingual Neural Machine Translation (2205.01620v2)

Published 3 May 2022 in cs.CL

Abstract: Although all-in-one-model multilingual neural machine translation (multilingual NMT) has achieved remarkable progress, the convergence inconsistency in the joint training is ignored, i.e., different language pairs reaching convergence in different epochs. This leads to the trained MNMT model over-fitting low-resource language translations while under-fitting high-resource ones. In this paper, we propose a novel training strategy named LSSD (Language-Specific Self-Distillation), which can alleviate the convergence inconsistency and help MNMT models achieve the best performance on each language pair simultaneously. Specifically, LSSD picks up language-specific best checkpoints for each language pair to teach the current model on the fly. Furthermore, we systematically explore three sample-level manipulations of knowledge transferring. Experimental results on three datasets show that LSSD obtains consistent improvements towards all language pairs and achieves the state-of-the-art.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.