2000 character limit reached
The Liouville theorem for discrete symmetric averaging operators (2204.12295v2)
Published 26 Apr 2022 in math.AP and math.MG
Abstract: We introduce averaging operators on lattices $\mathbb{Z}d$ and study the Liouville property for functions satisfying mean value properties associated to such operators. This framework encloses discrete harmonic, $p$-harmonic, $\infty$-harmonic and the so-called game $p$-harmonic functions. Our approach provides an elementary alternative proof of the Liouville Theorem for positive $p$-harmonic functions on $\mathbb{Z}d$.
- T. Adamowicz, M. Gaczkowski, P. Górka, Harmonic functions on metric measure spaces, Rev. Mat. Complut. 32(1) (2019), 141–186.
- A. Arroyo, J. G. Llorente, A priori Hölder and Lipschitz regularity for generalized p-harmonious functions in metric measure spaces, Nonlinear Anal. 168 (2018), 32–49.
- A. Arroyo, J. G. Llorente, p𝑝pitalic_p-harmonic functions by way of intrinsic mean value properties, Adv. Calc. Var. 16(1) (2023), 111–129.
- V. Álvarez, J.M. Rodríguez, D. Yakubovich, Estimates for nonlinear harmonic “measures” on trees, Michigan Math. J. 49 (2001), no.1, 47–64.
- E. N. Barron, L.C. Evans, R. Jensen The infinity Laplacian, Aronsson’s equation and their generalizations Trans. Amer. Math. Soc. 360(1) (2008), 77–101.
- P. Blanc, J. D. Rossi, Game theory and partial differential equations, De Gruyter, Berlin (2019).
- A. Björn, J. Björn, N. Shanmugalingam, The Liouville theorem for p𝑝pitalic_p-harmonic functions and quasiminimizers with finite energy, Math. Z. 297(1-2) (2021), 827–854.
- A. Björn, J. Björn, N. Shanmugalingam, Classification of metric measure spaces and their ends using p𝑝pitalic_p-harmonic functions, Ann. Fenn. Math. 47(2) (2022), 1025–1052.
- L. Buhovsky, A. Logunov, E. Malinnikova, M. Sodin, A discrete harmonic function bounded on a large portion of ℤ2superscriptℤ2\mathbb{Z}^{2}blackboard_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is constant, Duke Math. J. 171(6) (2022), 1349–1378.
- J. Calder, The game theoretic p𝑝pitalic_p-Laplacian and semi-supervised learning with few labels, Nonlinearity 32 (2019), 301–330.
- J. Capoulade, Sur quelques propriétés des functions harmoniques et des functions préharmoniques, Mathematica, 8 (1932), 146–151.
- G. Choquet, J. Deny, Sur l’équation de convolution μ=μ*σ𝜇𝜇𝜎\mu=\mu*\sigmaitalic_μ = italic_μ * italic_σ, C. R. Acad. Sci. Paris 250 (1960), 799–801.
- T. Delmotte, Harnack inequalities on graphs, Séminaire de Théorie Spectrale et Géométrie, Vol. 16, Année 1997–1998, 217–228, Sémin. Théor. Spectr. Géom., 16, Univ. Grenoble I, Saint-Martin-d’Héres, 1998.
- R. J. Duffin, Discrete Potential Theory, Duke Math. J. 20 (1953), 233–251.
- J. L. Doob, J. L. Snell, R. E. Williamson, Application of boundary theory to sums of independent random variables, Contributions to probability and statistics. Stanford studies in Mathematics and Statistics, 2 (1960), 182–197.
- L. M. Del Pezzo, C.M. Mosquera, J. D. Rossi, Estimates for nonlinear harmonic measures on trees, Bull. Braz. Math. Soc. (N.S.) 45(3) (2014), 405–432.
- J.L. Doob, J.L. Snell, R.E. Williamson, Application of boundary theory to sums of independent random variables, 1960 Contributions to probability and statistics pp. 182–197 Stanford Univ. Press, Stanford, Calif.
- A. Elmoataz, M. Toutain, D. Tenbrinck, On the p𝑝pitalic_p-Laplacian and ∞\infty∞-Laplacian on graphs with applications in image and data processing, SIAM J. Imaging Sci. 8(4) (2015), 2412–2451.
- L. J. Grady, J. R. Polimeni, Discrete Calculus, Springer-Verlag, (2010).
- I. Holopainen, P.M. Soardi, p𝑝pitalic_p-harmonic functions on graphs and manifolds, Manuscripta Math. 94(1) (1997), 95–110.
- I. Holopainen, P.M. Soardi, A strong Liouville theorem for p𝑝pitalic_p-harmonic functions on graphs, Ann. Acad. Sci. Fenn. Math. 22(1) (1997), 205–226.
- J. Heinonen, T- Kilpeläinen, O. Martio Nonlinear potential theory of degenerate elliptic equations, Dover Publications, (2006).
- R. Kaufman, J. G. Llorente, J.M. Wu, Nonlinear harmonic measures on trees, Ann. Acad. Sci. Fenn. (Math.), 28 (2003), 279–302.
- J. Le Roux, Sur le probléme de Dirichlet, J. Mathématiques Pures et Apliquées, 10 (1914), 189–230.
- E. Le Gruyer, J. C. Archer, Harmonious extensions, SIAM J. Math. Anal. 29(1) (1998), 279–292.
- J. G. Llorente, J. J. Manfredi, J. M. Wu, p𝑝pitalic_p-harmonic measure is not additive on null sets, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)4 (2005), no.2, 357–373.
- J. J. Manfredi, A. M. Oberman, A. P. Sviridov, Nonlinear elliptic partial differential equations and p𝑝pitalic_p-harmonic functions on graphs, Differenrial and Integral Equations 28(1-2) (2015), 79–102.
- An asymptotic mean value characterization for p-harmonic functions, Proc. Amer. Math. Soc. 138(3) (2010), 881–889.
- On the definition and properties of p-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(2) (2012), 215–241.
- G.A. Margulis, Positive harmonic functions on nilpotent groups, Dokl. Akad. Nauk SSSR 166 1054–1057 (Russian); translated as Soviet Math. Dokl. 7 1966 241–244.
- J.M. Mazón, J.D. Rossi, J. Toledo On the best Lipschitz extension problem for a discrete distance and the discrete ∞\infty∞-Laplacian J. Math. Pures Appl. (9) 97(2) (2012), 98–119.
- Y. Peres, O. Schramm, S. Sheffield, D. B. Wilson, Tug-of-war and the infinite Laplacian, J. Amer. Math. Soc. 22 (2009), 167–210.
- Y. Peres, S. Sheffield, Tug-of-war with noise: a game theoretic view of the p𝑝pitalic_p-Laplacian, Duke Math. J. 145(1) (2008), 91–120.
- S. Sawyer, Martin boundaries and random walks, Contemp. Math. 206, Amer. Math. Soc. (1997), 17–44.
- V. Totik, The Mean Value Property, Math. Intelligencer, 25 (2015), 9–16.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.