Papers
Topics
Authors
Recent
2000 character limit reached

The Liouville theorem for discrete symmetric averaging operators (2204.12295v2)

Published 26 Apr 2022 in math.AP and math.MG

Abstract: We introduce averaging operators on lattices $\mathbb{Z}d$ and study the Liouville property for functions satisfying mean value properties associated to such operators. This framework encloses discrete harmonic, $p$-harmonic, $\infty$-harmonic and the so-called game $p$-harmonic functions. Our approach provides an elementary alternative proof of the Liouville Theorem for positive $p$-harmonic functions on $\mathbb{Z}d$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. T. Adamowicz, M. Gaczkowski, P. Górka, Harmonic functions on metric measure spaces, Rev. Mat. Complut. 32(1) (2019), 141–186.
  2. A. Arroyo, J. G. Llorente, A priori Hölder and Lipschitz regularity for generalized p-harmonious functions in metric measure spaces, Nonlinear Anal. 168 (2018), 32–49.
  3. A. Arroyo, J. G. Llorente, p𝑝pitalic_p-harmonic functions by way of intrinsic mean value properties, Adv. Calc. Var. 16(1) (2023), 111–129.
  4. V. Álvarez, J.M. Rodríguez, D. Yakubovich, Estimates for nonlinear harmonic “measures” on trees, Michigan Math. J. 49 (2001), no.1, 47–64.
  5. E. N. Barron, L.C. Evans, R. Jensen The infinity Laplacian, Aronsson’s equation and their generalizations Trans. Amer. Math. Soc. 360(1) (2008), 77–101.
  6. P. Blanc, J. D. Rossi, Game theory and partial differential equations, De Gruyter, Berlin (2019).
  7. A. Björn, J. Björn, N. Shanmugalingam, The Liouville theorem for p𝑝pitalic_p-harmonic functions and quasiminimizers with finite energy, Math. Z. 297(1-2) (2021), 827–854.
  8. A. Björn, J. Björn, N. Shanmugalingam, Classification of metric measure spaces and their ends using p𝑝pitalic_p-harmonic functions, Ann. Fenn. Math. 47(2) (2022), 1025–1052.
  9. L. Buhovsky, A. Logunov, E. Malinnikova, M. Sodin, A discrete harmonic function bounded on a large portion of ℤ2superscriptℤ2\mathbb{Z}^{2}blackboard_Z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is constant, Duke Math. J. 171(6) (2022), 1349–1378.
  10. J. Calder, The game theoretic p𝑝pitalic_p-Laplacian and semi-supervised learning with few labels, Nonlinearity 32 (2019), 301–330.
  11. J. Capoulade, Sur quelques propriétés des functions harmoniques et des functions préharmoniques, Mathematica, 8 (1932), 146–151.
  12. G. Choquet, J. Deny, Sur l’équation de convolution μ=μ*σ𝜇𝜇𝜎\mu=\mu*\sigmaitalic_μ = italic_μ * italic_σ, C. R. Acad. Sci. Paris 250 (1960), 799–801.
  13. T. Delmotte, Harnack inequalities on graphs, Séminaire de Théorie Spectrale et Géométrie, Vol. 16, Année 1997–1998, 217–228, Sémin. Théor. Spectr. Géom., 16, Univ. Grenoble I, Saint-Martin-d’Héres, 1998.
  14. R. J. Duffin, Discrete Potential Theory, Duke Math. J. 20 (1953), 233–251.
  15. J. L. Doob, J. L. Snell, R. E. Williamson, Application of boundary theory to sums of independent random variables, Contributions to probability and statistics. Stanford studies in Mathematics and Statistics, 2 (1960), 182–197.
  16. L. M. Del Pezzo, C.M. Mosquera, J. D. Rossi, Estimates for nonlinear harmonic measures on trees, Bull. Braz. Math. Soc. (N.S.) 45(3) (2014), 405–432.
  17. J.L. Doob, J.L. Snell, R.E. Williamson, Application of boundary theory to sums of independent random variables, 1960 Contributions to probability and statistics pp. 182–197 Stanford Univ. Press, Stanford, Calif.
  18. A. Elmoataz, M. Toutain, D. Tenbrinck, On the p𝑝pitalic_p-Laplacian and ∞\infty∞-Laplacian on graphs with applications in image and data processing, SIAM J. Imaging Sci. 8(4) (2015), 2412–2451.
  19. L. J. Grady, J. R. Polimeni, Discrete Calculus, Springer-Verlag, (2010).
  20. I. Holopainen, P.M. Soardi, p𝑝pitalic_p-harmonic functions on graphs and manifolds, Manuscripta Math. 94(1) (1997), 95–110.
  21. I. Holopainen, P.M. Soardi, A strong Liouville theorem for p𝑝pitalic_p-harmonic functions on graphs, Ann. Acad. Sci. Fenn. Math. 22(1) (1997), 205–226.
  22. J. Heinonen, T- Kilpeläinen, O. Martio Nonlinear potential theory of degenerate elliptic equations, Dover Publications, (2006).
  23. R. Kaufman, J. G. Llorente, J.M. Wu, Nonlinear harmonic measures on trees, Ann. Acad. Sci. Fenn. (Math.), 28 (2003), 279–302.
  24. J. Le Roux, Sur le probléme de Dirichlet, J. Mathématiques Pures et Apliquées, 10 (1914), 189–230.
  25. E. Le Gruyer, J. C. Archer, Harmonious extensions, SIAM J. Math. Anal. 29(1) (1998), 279–292.
  26. J. G. Llorente, J. J. Manfredi, J. M. Wu, p𝑝pitalic_p-harmonic measure is not additive on null sets, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)4 (2005), no.2, 357–373.
  27. J. J. Manfredi, A. M. Oberman, A. P. Sviridov, Nonlinear elliptic partial differential equations and p𝑝pitalic_p-harmonic functions on graphs, Differenrial and Integral Equations 28(1-2) (2015), 79–102.
  28. An asymptotic mean value characterization for p-harmonic functions, Proc. Amer. Math. Soc. 138(3) (2010), 881–889.
  29. On the definition and properties of p-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(2) (2012), 215–241.
  30. G.A. Margulis, Positive harmonic functions on nilpotent groups, Dokl. Akad. Nauk SSSR 166 1054–1057 (Russian); translated as Soviet Math. Dokl. 7 1966 241–244.
  31. J.M. Mazón, J.D. Rossi, J. Toledo On the best Lipschitz extension problem for a discrete distance and the discrete ∞\infty∞-Laplacian J. Math. Pures Appl. (9) 97(2) (2012), 98–119.
  32. Y. Peres, O. Schramm, S. Sheffield, D. B. Wilson, Tug-of-war and the infinite Laplacian, J. Amer. Math. Soc. 22 (2009), 167–210.
  33. Y. Peres, S. Sheffield, Tug-of-war with noise: a game theoretic view of the p𝑝pitalic_p-Laplacian, Duke Math. J. 145(1) (2008), 91–120.
  34. S. Sawyer, Martin boundaries and random walks, Contemp. Math. 206, Amer. Math. Soc. (1997), 17–44.
  35. V. Totik, The Mean Value Property, Math. Intelligencer, 25 (2015), 9–16.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.