Dual metrics on the boundary of strictly polyhedral hyperbolic 3-manifolds (2203.16971v5)
Abstract: Let $M$ be a compact oriented 3-manifold with non-empty boundary consisting of surfaces of genii $>1$ such that the interior of $M$ is hyperbolizable. We show that for each spherical cone-metric $d$ on $\partial M$ such that all cone-angles are greater than $2\pi$ and the lengths of all closed geodesics that are contractible in $M$ are greater than $2\pi$ there exists a unique strictly polyhedral hyperbolic metric on $M$ such that $d$ is the induced dual metric on $\partial M$.
- A. D. Alexandrov. Intrinsic geometry of convex surfaces. Chapman & Hall/CRC, Boca Raton, FL, 2006.
- Cores of hyperbolic 3333-manifolds and limits of Kleinian groups. Amer. J. Math., 118(4):745–779, 1996.
- E. M. Andreev. Convex polyhedra of finite volume in Lobacevskii space. Mat. Sb. (N.S.), 83 (125):256–260, 1970.
- A. I. Bobenko and I. Izmestiev. Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes. Ann. Inst. Fourier (Grenoble), 58(2):447–505, 2008.
- Geometrization of 3-dimensional orbifolds. Ann. of Math. (2), 162(1):195–290, 2005.
- F. Bonahon and J.-P. Otal. Laminations measurées de plissage des variétés hyperboliques de dimension 3. Ann. of Math. (2), 160(3):1013–1055, 2004.
- M. Bridgeman and R. D. Canary. From the boundary of the convex core to the conformal boundary. Geom. Dedicata, 96:211–240, 2003.
- K. Bromberg. Hyperbolic cone-manifolds, short geodesics, and Schwarzian derivatives. J. Amer. Math. Soc., 17(4):783–826, 2004.
- A course in metric geometry. American Mathematical Society, Providence, RI, 2001.
- Notes on notes of Thurston. In Fundamentals of hyperbolic geometry: selected expositions, pages 1–115. Cambridge Univ. Press, Cambridge, 2006.
- R. D. Canary and D. McCullough. Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups. Mem. Amer. Math. Soc., 172(812):xii+218, 2004.
- R. Charney and M. Davis. The polar dual of a convex polyhedral set in hyperbolic space. Michigan Math. J., 42(3):479–510, 1995.
- J. Cheeger. On the Hodge theory of Riemannian pseudomanifolds. In Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), pages 91–146. Amer. Math. Soc., Providence, RI, 1980.
- S. Cohn-Vossen. Zwei Sätze über die Starrheit der Eiflächen. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1927:125–134, 1927.
- Three-dimensional orbifolds and cone-manifolds. Mathematical Society of Japan, Tokyo, 2000.
- M. Culler. Lifting representations to covering groups. Adv. in Math., 59(1):64–70, 1986.
- D. B. A. Epstein and A. Marden. Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces. In Fundamentals of hyperbolic geometry: selected expositions, pages 117–266. Cambridge Univ. Press, Cambridge, 2006.
- B. Farb and D. Margalit. A primer on mapping class groups. Princeton University Press, Princeton, NJ, 2012.
- Travaux de Thurston sur les surfaces. Société Mathématique de France, Paris, 1979.
- F. Fillastre. Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces. Ann. Inst. Fourier (Grenoble), 57(1):163–195, 2007.
- F. Fillastre. Fuchsian polyhedra in Lorentzian space-forms. Math. Ann., 350(2):417–453, 2011.
- F. Fillastre and I. Izmestiev. Hyperbolic cusps with convex polyhedral boundary. Geom. Topol., 13(1):457–492, 2009.
- F. Fillastre and I. Izmestiev. Gauss images of hyperbolic cusps with convex polyhedral boundary. Trans. Amer. Math. Soc., 363(10):5481–5536, 2011.
- Hyperbolization of cusps with convex boundary. Manuscripta Math., 150(3-4):475–492, 2016.
- F. Fillastre and A. Seppi. Spherical, hyperbolic, and other projective geometries: convexity, duality, transitions. In Eighteen essays in non-Euclidean geometry, pages 321–409. Eur. Math. Soc., Zürich, 2019.
- F. François and R. Prosanov. Polyhedral surfaces in flat (2+1)-spacetimes and balanced cellulations on hyperbolic surfaces, 2023. ArXiv e-print 2312.14266.
- Homotopy hyperbolic 3-manifolds are hyperbolic. Ann. of Math. (2), 157(2):335–431, 2003.
- M.-E. Hamstrom. Homotopy groups of the space of homeomorphisms on a 2222-manifold. Illinois J. Math., 10:563–573, 1966.
- G. Herglotz. Über die Starrheit der Eiflächen. Abh. Math. Semin. Univ. Hamb., 15:127–129, 1943.
- Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery. J. Differential Geom., 48(1):1–59, 1998.
- Universal bounds for hyperbolic Dehn surgery. Ann. of Math. (2), 162(1):367–421, 2005.
- D. Johnson and J. J. Millson. Deformation spaces associated to compact hyperbolic manifolds. In Discrete groups in geometry and analysis (New Haven, Conn., 1984), pages 48–106. Birkhäuser Boston, Boston, MA, 1987.
- T. Jørgensen. On discrete groups of Möbius transformations. Amer. J. Math., 98(3):739–749, 1976.
- F. Labourie. Métriques prescrites sur le bord des variétés hyperboliques de dimension 3333. J. Differential Geom., 35(3):609–626, 1992.
- C. Lecuire. Plissage des variétés hyperboliques de dimension 3. Invent. Math., 164(1):85–141, 2006.
- A. Marden. The geometry of finitely generated Kleinian groups. Ann. of Math. (2), 99:383–462, 1974.
- A. Marden. Deformations of Kleinian groups. In Handbook of Teichmüller theory. Vol. I, pages 411–446. Eur. Math. Soc., Zürich, 2007.
- A. Marden. Hyperbolic manifolds. An introduction in 2 and 3 dimensions. Cambridge University Press, Cambridge, 2016.
- Y. Matsushima and S. Murakami. On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds. Ann. of Math. (2), 78:365–416, 1963.
- R. Mazzeo and G. Montcouquiol. Infinitesimal rigidity of cone-manifolds and the Stoker problem for hyperbolic and Euclidean polyhedra. J. Differential Geom., 87(3):525–576, 2011.
- D. McCullough and A. Miller. Homeomorphisms of 3333-manifolds with compressible boundary. Mem. Amer. Math. Soc., 61(344):xii+100, 1986.
- G. Mess. Lorentz spacetimes of constant curvature. Geom. Dedicata, 126:3–45, 2007.
- A. D. Milka. The lemma of Busemann and Feller in spherical and hyperbolic spaces. Ukrain. Geometr. Sb., (10):40–49, 1971.
- G. Montcouquiol. Deformations of hyperbolic convex polyhedra and cone-3-manifolds. Geom. Dedicata, 166:163–183, 2013.
- G. Montcouquiol and H. Weiss. Complex twist flows on surface group representations and the local shape of the deformation space of hyperbolic cone-3-manifolds. Geom. Topol., 17(1):369–412, 2013.
- J. W. Morgan. On Thurston’s uniformization theorem for three-dimensional manifolds. In The Smith conjecture (New York, 1979), pages 37–125. Academic Press, Orlando, FL, 1984.
- G. D. Mostow. Quasi-conformal mappings in n𝑛nitalic_n-space and the rigidity of hyperbolic space forms. Inst. Hautes Études Sci. Publ. Math., (34):53–104, 1968.
- L. Nirenberg. The Weyl and Minkowski problems in differential geometry in the large. Commun. Pure Appl. Math., 6:337–394, 1953.
- A. V. Pogorelov. Extrinsic geometry of convex surfaces. American Mathematical Society, Providence, R.I., 1973.
- R. Prosanov. Rigidity of compact convex Fuchsian manifolds. Int. Math. Res. Not. IMRN. to appear.
- R. Prosanov. Ideal polyhedral surfaces in Fuchsian manifolds. Geometria Dedicata, 206(1):151–179, 2020.
- R. Prosanov. Hyperbolic 3-manifolds with boundary of polyhedral type, 2022. ArXiv e-print 2210.17271.
- M. S. Raghunathan. Discrete subgroups of Lie groups. Springer-Verlag, New York-Heidelberg, 1972.
- I. Rivin. A characterization of ideal polyhedra in hyperbolic 3333-space. Ann. of Math. (2), 143(1):51–70, 1996.
- I. Rivin. Extra-large metrics, 2005. ArXiv e-print 0509320.
- I. Rivin and C. D. Hodgson. A characterization of compact convex polyhedra in hyperbolic 3333-space. Invent. Math., 111(1):77–111, 1993.
- K. P. Scannell. Flat conformal structures and the classification of de Sitter manifolds. Comm. Anal. Geom., 7(2):325–345, 1999.
- J.-M. Schlenker. Surfaces convexes dans des espaces lorentziens à courbure constante. Comm. Anal. Geom., 4(1-2):285–331, 1996.
- J.-M. Schlenker. Métriques sur les polyèdres hyperboliques convexes. J. Differential Geom., 48(2):323–405, 1998.
- J.-M. Schlenker. Convex polyhedra in Lorentzian space-forms. Asian J. Math., 5(2):327–363, 2001.
- J.-M. Schlenker. Hyperbolic manifolds with polyhedral boundary, 2001. ArXiv e-print 0111136.
- J.-M. Schlenker. Hyperbolic manifolds with convex boundary. Invent. Math., 163(1):109–169, 2006.
- D. Slutskiy. Compact domains with prescribed convex boundary metrics in quasi-Fuchsian manifolds. Bull. Soc. Math. France, 146(2):309–353, 2018.
- G. Smith. A short proof of an assertion of Thurston concerning convex hulls. In In the tradition of Thurston – geometry and topology, pages 255–261. Springer, Cham, 2020.
- D. Sullivan. Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3333 fibrées sur S1superscript𝑆1S^{1}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT. In Bourbaki Seminar, Vol. 1979/80, pages 196–214. Springer, Berlin-New York, 1981.
- W. P. Thurston. The geometry and topology of 3-manifold. Princeton University Press, Princeton, NJ, 1978.
- Y. A. Volkov. Existence of a polyhedron with prescribed development. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 476(13):50–78, 2018.
- F. Waldhausen. On irreducible 3333-manifolds which are sufficiently large. Ann. of Math. (2), 87:56–88, 1968.
- A. Weil. Remarks on the cohomology of groups. Ann. of Math. (2), 80:149–157, 1964.
- H. Weiss. Local rigidity of 3-dimensional cone-manifolds. J. Differential Geom., 71(3):437–506, 2005.
- H. Weiss. The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than 2π2𝜋2\pi2 italic_π. Geom. Topol., 17(1):329–367, 2013.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.