Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Dual metrics on the boundary of strictly polyhedral hyperbolic 3-manifolds (2203.16971v5)

Published 31 Mar 2022 in math.MG and math.GT

Abstract: Let $M$ be a compact oriented 3-manifold with non-empty boundary consisting of surfaces of genii $>1$ such that the interior of $M$ is hyperbolizable. We show that for each spherical cone-metric $d$ on $\partial M$ such that all cone-angles are greater than $2\pi$ and the lengths of all closed geodesics that are contractible in $M$ are greater than $2\pi$ there exists a unique strictly polyhedral hyperbolic metric on $M$ such that $d$ is the induced dual metric on $\partial M$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. A. D. Alexandrov. Intrinsic geometry of convex surfaces. Chapman & Hall/CRC, Boca Raton, FL, 2006.
  2. Cores of hyperbolic 3333-manifolds and limits of Kleinian groups. Amer. J. Math., 118(4):745–779, 1996.
  3. E. M. Andreev. Convex polyhedra of finite volume in Lobacevskii space. Mat. Sb. (N.S.), 83 (125):256–260, 1970.
  4. A. I. Bobenko and I. Izmestiev. Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes. Ann. Inst. Fourier (Grenoble), 58(2):447–505, 2008.
  5. Geometrization of 3-dimensional orbifolds. Ann. of Math. (2), 162(1):195–290, 2005.
  6. F. Bonahon and J.-P. Otal. Laminations measurées de plissage des variétés hyperboliques de dimension 3. Ann. of Math. (2), 160(3):1013–1055, 2004.
  7. M. Bridgeman and R. D. Canary. From the boundary of the convex core to the conformal boundary. Geom. Dedicata, 96:211–240, 2003.
  8. K. Bromberg. Hyperbolic cone-manifolds, short geodesics, and Schwarzian derivatives. J. Amer. Math. Soc., 17(4):783–826, 2004.
  9. A course in metric geometry. American Mathematical Society, Providence, RI, 2001.
  10. Notes on notes of Thurston. In Fundamentals of hyperbolic geometry: selected expositions, pages 1–115. Cambridge Univ. Press, Cambridge, 2006.
  11. R. D. Canary and D. McCullough. Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups. Mem. Amer. Math. Soc., 172(812):xii+218, 2004.
  12. R. Charney and M. Davis. The polar dual of a convex polyhedral set in hyperbolic space. Michigan Math. J., 42(3):479–510, 1995.
  13. J. Cheeger. On the Hodge theory of Riemannian pseudomanifolds. In Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), pages 91–146. Amer. Math. Soc., Providence, RI, 1980.
  14. S. Cohn-Vossen. Zwei Sätze über die Starrheit der Eiflächen. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1927:125–134, 1927.
  15. Three-dimensional orbifolds and cone-manifolds. Mathematical Society of Japan, Tokyo, 2000.
  16. M. Culler. Lifting representations to covering groups. Adv. in Math., 59(1):64–70, 1986.
  17. D. B. A. Epstein and A. Marden. Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces. In Fundamentals of hyperbolic geometry: selected expositions, pages 117–266. Cambridge Univ. Press, Cambridge, 2006.
  18. B. Farb and D. Margalit. A primer on mapping class groups. Princeton University Press, Princeton, NJ, 2012.
  19. Travaux de Thurston sur les surfaces. Société Mathématique de France, Paris, 1979.
  20. F. Fillastre. Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces. Ann. Inst. Fourier (Grenoble), 57(1):163–195, 2007.
  21. F. Fillastre. Fuchsian polyhedra in Lorentzian space-forms. Math. Ann., 350(2):417–453, 2011.
  22. F. Fillastre and I. Izmestiev. Hyperbolic cusps with convex polyhedral boundary. Geom. Topol., 13(1):457–492, 2009.
  23. F. Fillastre and I. Izmestiev. Gauss images of hyperbolic cusps with convex polyhedral boundary. Trans. Amer. Math. Soc., 363(10):5481–5536, 2011.
  24. Hyperbolization of cusps with convex boundary. Manuscripta Math., 150(3-4):475–492, 2016.
  25. F. Fillastre and A. Seppi. Spherical, hyperbolic, and other projective geometries: convexity, duality, transitions. In Eighteen essays in non-Euclidean geometry, pages 321–409. Eur. Math. Soc., Zürich, 2019.
  26. F. François and R. Prosanov. Polyhedral surfaces in flat (2+1)-spacetimes and balanced cellulations on hyperbolic surfaces, 2023. ArXiv e-print 2312.14266.
  27. Homotopy hyperbolic 3-manifolds are hyperbolic. Ann. of Math. (2), 157(2):335–431, 2003.
  28. M.-E. Hamstrom. Homotopy groups of the space of homeomorphisms on a 2222-manifold. Illinois J. Math., 10:563–573, 1966.
  29. G. Herglotz. Über die Starrheit der Eiflächen. Abh. Math. Semin. Univ. Hamb., 15:127–129, 1943.
  30. Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery. J. Differential Geom., 48(1):1–59, 1998.
  31. Universal bounds for hyperbolic Dehn surgery. Ann. of Math. (2), 162(1):367–421, 2005.
  32. D. Johnson and J. J. Millson. Deformation spaces associated to compact hyperbolic manifolds. In Discrete groups in geometry and analysis (New Haven, Conn., 1984), pages 48–106. Birkhäuser Boston, Boston, MA, 1987.
  33. T. Jørgensen. On discrete groups of Möbius transformations. Amer. J. Math., 98(3):739–749, 1976.
  34. F. Labourie. Métriques prescrites sur le bord des variétés hyperboliques de dimension 3333. J. Differential Geom., 35(3):609–626, 1992.
  35. C. Lecuire. Plissage des variétés hyperboliques de dimension 3. Invent. Math., 164(1):85–141, 2006.
  36. A. Marden. The geometry of finitely generated Kleinian groups. Ann. of Math. (2), 99:383–462, 1974.
  37. A. Marden. Deformations of Kleinian groups. In Handbook of Teichmüller theory. Vol. I, pages 411–446. Eur. Math. Soc., Zürich, 2007.
  38. A. Marden. Hyperbolic manifolds. An introduction in 2 and 3 dimensions. Cambridge University Press, Cambridge, 2016.
  39. Y. Matsushima and S. Murakami. On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds. Ann. of Math. (2), 78:365–416, 1963.
  40. R. Mazzeo and G. Montcouquiol. Infinitesimal rigidity of cone-manifolds and the Stoker problem for hyperbolic and Euclidean polyhedra. J. Differential Geom., 87(3):525–576, 2011.
  41. D. McCullough and A. Miller. Homeomorphisms of 3333-manifolds with compressible boundary. Mem. Amer. Math. Soc., 61(344):xii+100, 1986.
  42. G. Mess. Lorentz spacetimes of constant curvature. Geom. Dedicata, 126:3–45, 2007.
  43. A. D. Milka. The lemma of Busemann and Feller in spherical and hyperbolic spaces. Ukrain. Geometr. Sb., (10):40–49, 1971.
  44. G. Montcouquiol. Deformations of hyperbolic convex polyhedra and cone-3-manifolds. Geom. Dedicata, 166:163–183, 2013.
  45. G. Montcouquiol and H. Weiss. Complex twist flows on surface group representations and the local shape of the deformation space of hyperbolic cone-3-manifolds. Geom. Topol., 17(1):369–412, 2013.
  46. J. W. Morgan. On Thurston’s uniformization theorem for three-dimensional manifolds. In The Smith conjecture (New York, 1979), pages 37–125. Academic Press, Orlando, FL, 1984.
  47. G. D. Mostow. Quasi-conformal mappings in n𝑛nitalic_n-space and the rigidity of hyperbolic space forms. Inst. Hautes Études Sci. Publ. Math., (34):53–104, 1968.
  48. L. Nirenberg. The Weyl and Minkowski problems in differential geometry in the large. Commun. Pure Appl. Math., 6:337–394, 1953.
  49. A. V. Pogorelov. Extrinsic geometry of convex surfaces. American Mathematical Society, Providence, R.I., 1973.
  50. R. Prosanov. Rigidity of compact convex Fuchsian manifolds. Int. Math. Res. Not. IMRN. to appear.
  51. R. Prosanov. Ideal polyhedral surfaces in Fuchsian manifolds. Geometria Dedicata, 206(1):151–179, 2020.
  52. R. Prosanov. Hyperbolic 3-manifolds with boundary of polyhedral type, 2022. ArXiv e-print 2210.17271.
  53. M. S. Raghunathan. Discrete subgroups of Lie groups. Springer-Verlag, New York-Heidelberg, 1972.
  54. I. Rivin. A characterization of ideal polyhedra in hyperbolic 3333-space. Ann. of Math. (2), 143(1):51–70, 1996.
  55. I. Rivin. Extra-large metrics, 2005. ArXiv e-print 0509320.
  56. I. Rivin and C. D. Hodgson. A characterization of compact convex polyhedra in hyperbolic 3333-space. Invent. Math., 111(1):77–111, 1993.
  57. K. P. Scannell. Flat conformal structures and the classification of de Sitter manifolds. Comm. Anal. Geom., 7(2):325–345, 1999.
  58. J.-M. Schlenker. Surfaces convexes dans des espaces lorentziens à courbure constante. Comm. Anal. Geom., 4(1-2):285–331, 1996.
  59. J.-M. Schlenker. Métriques sur les polyèdres hyperboliques convexes. J. Differential Geom., 48(2):323–405, 1998.
  60. J.-M. Schlenker. Convex polyhedra in Lorentzian space-forms. Asian J. Math., 5(2):327–363, 2001.
  61. J.-M. Schlenker. Hyperbolic manifolds with polyhedral boundary, 2001. ArXiv e-print 0111136.
  62. J.-M. Schlenker. Hyperbolic manifolds with convex boundary. Invent. Math., 163(1):109–169, 2006.
  63. D. Slutskiy. Compact domains with prescribed convex boundary metrics in quasi-Fuchsian manifolds. Bull. Soc. Math. France, 146(2):309–353, 2018.
  64. G. Smith. A short proof of an assertion of Thurston concerning convex hulls. In In the tradition of Thurston – geometry and topology, pages 255–261. Springer, Cham, 2020.
  65. D. Sullivan. Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3333 fibrées sur S1superscript𝑆1S^{1}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT. In Bourbaki Seminar, Vol. 1979/80, pages 196–214. Springer, Berlin-New York, 1981.
  66. W. P. Thurston. The geometry and topology of 3-manifold. Princeton University Press, Princeton, NJ, 1978.
  67. Y. A. Volkov. Existence of a polyhedron with prescribed development. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 476(13):50–78, 2018.
  68. F. Waldhausen. On irreducible 3333-manifolds which are sufficiently large. Ann. of Math. (2), 87:56–88, 1968.
  69. A. Weil. Remarks on the cohomology of groups. Ann. of Math. (2), 80:149–157, 1964.
  70. H. Weiss. Local rigidity of 3-dimensional cone-manifolds. J. Differential Geom., 71(3):437–506, 2005.
  71. H. Weiss. The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than 2⁢π2𝜋2\pi2 italic_π. Geom. Topol., 17(1):329–367, 2013.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube