Volume and rigidity of hyperbolic polyhedral $3$-manifolds (1404.5365v2)
Abstract: We investigate the rigidity of hyperbolic cone metrics on $3$-manifolds which are isometric gluing of ideal and hyper-ideal tetrahedra in hyperbolic spaces. These metrics will be called ideal and hyper-ideal hyperbolic polyhedral metrics. It is shown that a hyper-ideal hyperbolic polyhedral metric is determined up to isometry by its curvature and a decorated ideal hyperbolic polyhedral metric is determined up to isometry and change of decorations by its curvature. The main tool used in the proof is the Fenchel dual of the volume function.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.