Papers
Topics
Authors
Recent
2000 character limit reached

Tailored XZZX codes for biased noise

Published 30 Mar 2022 in quant-ph | (2203.16486v1)

Abstract: Quantum error correction (QEC) for generic errors is challenging due to the demanding threshold and resource requirements. Interestingly, when physical noise is biased, we can tailor our QEC schemes to the noise to improve performance. Here we study a family of codes having XZZX-type stabilizer generators, including a set of cyclic codes generalized from the five-qubit code and a set of topological codes that we call generalized toric codes (GTCs). We show that these XZZX codes are highly qubit efficient if tailored to biased noise. To characterize the code performance, we use the notion of effective distance, which generalizes code distance to the case of biased noise and constitutes a proxy for the logical failure rate. We find that the XZZX codes can achieve a favorable resource scaling by this metric under biased noise. We also show that the XZZX codes have remarkably high thresholds that reach what is achievable by random codes, and furthermore they can be efficiently decoded using matching decoders. Finally, by adding only one flag qubit, the XZZX codes can realize fault-tolerant QEC while preserving their large effective distance. In combination, our results show that tailored XZZX codes give a resource-efficient scheme for fault-tolerant QEC against biased noise.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.