Papers
Topics
Authors
Recent
2000 character limit reached

Autoregressive Co-Training for Learning Discrete Speech Representations (2203.15840v2)

Published 29 Mar 2022 in cs.CL

Abstract: While several self-supervised approaches for learning discrete speech representation have been proposed, it is unclear how these seemingly similar approaches relate to each other. In this paper, we consider a generative model with discrete latent variables that learns a discrete representation for speech. The objective of learning the generative model is formulated as information-theoretic co-training. Besides the wide generality, the objective can be optimized with several approaches, subsuming HuBERT-like training and vector quantization for learning discrete representation. Empirically, we find that the proposed approach learns discrete representation that is highly correlated with phonetic units, more correlated than HuBERT-like training and vector quantization.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.