Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Transformer Model for Scientific Named Entity Recognition (2203.14710v1)

Published 28 Mar 2022 in cs.CL and cs.LG

Abstract: The task of Named Entity Recognition (NER) is an important component of many natural language processing systems, such as relation extraction and knowledge graph construction. In this work, we present a simple and effective approach for Named Entity Recognition. The main idea of our approach is to encode the input subword sequence with a pre-trained transformer such as BERT, and then, instead of directly classifying the word labels, another layer of transformer is added to the subword representation to better encode the word-level interaction. We evaluate our approach on three benchmark datasets for scientific NER, particularly in the computer science and biomedical domains. Experimental results show that our model outperforms the current state-of-the-art on SciERC and TDM datasets without requiring external resources or specific data augmentation. Code is available at \url{https://github.com/urchade/HNER}.

Citations (2)

Summary

We haven't generated a summary for this paper yet.