Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
90 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
78 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
208 tokens/sec
2000 character limit reached

Equivariant Point Cloud Analysis via Learning Orientations for Message Passing (2203.14486v1)

Published 28 Mar 2022 in cs.CV

Abstract: Equivariance has been a long-standing concern in various fields ranging from computer vision to physical modeling. Most previous methods struggle with generality, simplicity, and expressiveness -- some are designed ad hoc for specific data types, some are too complex to be accessible, and some sacrifice flexible transformations. In this work, we propose a novel and simple framework to achieve equivariance for point cloud analysis based on the message passing (graph neural network) scheme. We find the equivariant property could be obtained by introducing an orientation for each point to decouple the relative position for each point from the global pose of the entire point cloud. Therefore, we extend current message passing networks with a module that learns orientations for each point. Before aggregating information from the neighbors of a point, the networks transforms the neighbors' coordinates based on the point's learned orientations. We provide formal proofs to show the equivariance of the proposed framework. Empirically, we demonstrate that our proposed method is competitive on both point cloud analysis and physical modeling tasks. Code is available at https://github.com/luost26/Equivariant-OrientedMP .

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube