Papers
Topics
Authors
Recent
2000 character limit reached

Integrable quadratic structures in peakon models (2203.13593v1)

Published 25 Mar 2022 in nlin.SI, math-ph, and math.MP

Abstract: We propose realizations of the Poisson structures for the Lax representations of three integrable $n$-body peakon equations, Camassa--Holm, Degasperis--Procesi and Novikov. The Poisson structures derived from the integrability structures of the continuous equations yield quadratic forms for the $r$-matrix representation, with the Toda molecule classical $r$-matrix playing a prominent role. We look for a linear form for the $r$-matrix representation. Aside from the Camassa--Holm case, where the structure is already known, the two other cases do not allow such a presentation, with the noticeable exception of the Novikov model at $n=2$. Generalized Hamiltonians obtained from the canonical Sklyanin trace formula for quadratic structures are derived in the three cases.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.