Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

Duality-Induced Regularizer for Semantic Matching Knowledge Graph Embeddings (2203.12949v2)

Published 24 Mar 2022 in cs.CL and cs.AI

Abstract: Semantic matching models -- which assume that entities with similar semantics have similar embeddings -- have shown great power in knowledge graph embeddings (KGE). Many existing semantic matching models use inner products in embedding spaces to measure the plausibility of triples and quadruples in static and temporal knowledge graphs. However, vectors that have the same inner products with another vector can still be orthogonal to each other, which implies that entities with similar semantics may have dissimilar embeddings. This property of inner products significantly limits the performance of semantic matching models. To address this challenge, we propose a novel regularizer -- namely, DUality-induced RegulArizer (DURA) -- which effectively encourages the entities with similar semantics to have similar embeddings. The major novelty of DURA is based on the observation that, for an existing semantic matching KGE model (primal), there is often another distance based KGE model (dual) closely associated with it, which can be used as effective constraints for entity embeddings. Experiments demonstrate that DURA consistently and significantly improves the performance of state-of-the-art semantic matching models on both static and temporal knowledge graph benchmarks.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.