Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey of Machine Learning Algorithms for 6G Wireless Networks (2203.08429v1)

Published 16 Mar 2022 in cs.NI

Abstract: The primary focus of Artificial Intelligence/Machine Learning (AI/ML) integration within the wireless technology is to reduce capital expenditures, optimize network performance, and build new revenue streams. Replacing traditional algorithms with deep learning AI techniques have dramatically reduced the power consumption and improved the system performance. Further, implementation of ML algorithms also enables the wireless network service providers to (i) offer high automation levels from distributed AI/ML architectures applicable at the network edge, (ii) implement application-based traffic steering across the access networks, (iii) enable dynamic network slicing for addressing different scenarios with varying quality of service requirements, and (iv) enable ubiquitous connectivity across the various 6G communication platforms. In this chapter, we review/survey the ML techniques which are applicable to the 6G wireless networks. and also list the open problems of research which require timely solutions.

Citations (9)

Summary

We haven't generated a summary for this paper yet.