Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Stochastic Probabilistic Inference (2203.07585v1)

Published 15 Mar 2022 in cs.LG, cs.AI, and stat.ML

Abstract: Recently, Stochastic Variational Inference (SVI) has been increasingly attractive thanks to its ability to find good posterior approximations of probabilistic models. It optimizes the variational objective with stochastic optimization, following noisy estimates of the natural gradient. However, almost all the state-of-the-art SVI algorithms are based on first-order optimization algorithm and often suffer from poor convergence rate. In this paper, we bridge the gap between second-order methods and stochastic variational inference by proposing a second-order based stochastic variational inference approach. In particular, firstly we derive the Hessian matrix of the variational objective. Then we devise two numerical schemes to implement second-order SVI efficiently. Thorough empirical evaluations are investigated on both synthetic and real dataset to backup both the effectiveness and efficiency of the proposed approach.

Summary

We haven't generated a summary for this paper yet.