Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Theorem Provers Delineating Search Area Using RNN (2203.06985v1)

Published 14 Mar 2022 in cs.LG and cs.AI

Abstract: Although traditional symbolic reasoning methods are highly interpretable, their application in knowledge graphs link prediction has been limited due to their computational inefficiency. A new RNNNTP method is proposed in this paper, using a generalized EM-based approach to continuously improve the computational efficiency of Neural Theorem Provers(NTPs). The RNNNTP is divided into relation generator and predictor. The relation generator is trained effectively and interpretably, so that the whole model can be carried out according to the development of the training, and the computational efficiency is also greatly improved. In all four data-sets, this method shows competitive performance on the link prediction task relative to traditional methods as well as one of the current strong competitive methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.