Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 108 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 205 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Implementing Optimization-Based Control Tasks in Cyber-Physical Systems With Limited Computing Capacity (2203.05745v1)

Published 11 Mar 2022 in math.OC

Abstract: A common aspect of today's cyber-physical systems is that multiple optimization-based control tasks may execute in a shared processor. Such control tasks make use of online optimization and thus have large execution times; hence, their sampling periods must be large as well to satisfy real-time schedulability condition. However, larger sampling periods may cause worse control performance. The goal of our work is to develop a robust to early termination optimization approach that can be used to effectively solve onboard optimization problems involved in controlling the system despite the presence of unpredictable, variable, and limited computing capacity. The significance of the developed approach is that the optimization iterations can be stopped at any time instant with a guaranteed feasible solution; as a result, optimization-based control tasks can be implemented with a small sampling period (and consequently with a minimum degradation in the control performance).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.