Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning based Optimal Feedback Control for Microgrid Stabilization (2203.04815v1)

Published 9 Mar 2022 in eess.SY, cs.LG, cs.SY, and math.DS

Abstract: Microgrids have more operational flexibilities as well as uncertainties than conventional power grids, especially when renewable energy resources are utilized. An energy storage based feedback controller can compensate undesired dynamics of a microgrid to improve its stability. However, the optimal feedback control of a microgrid subject to a large disturbance needs to solve a Hamilton-Jacobi-BeLLMan problem. This paper proposes a machine learning-based optimal feedback control scheme. Its training dataset is generated from a linear-quadratic regulator and a brute-force method respectively addressing small and large disturbances. Then, a three-layer neural network is constructed from the data for the purpose of optimal feedback control. A case study is carried out for a microgrid model based on a modified Kundur two-area system to test the real-time performance of the proposed control scheme.

Citations (2)

Summary

We haven't generated a summary for this paper yet.