Papers
Topics
Authors
Recent
2000 character limit reached

Converging approximations of attractors via almost Lyapunov functions and semidefinite programming (2203.02806v3)

Published 5 Mar 2022 in math.OC and math.DS

Abstract: In this paper we combine two existing approaches for approximating attractors. One of them approximates the attractors arbitrarily well by sublevel sets related to solutions of infinite dimensional linear programming problems. A downside there is that these sets are not necessarily positively invariant. On the contrary, the second method provides supersets of the attractor which are positively invariant. Their method on the other hand has the disadvantage that the underlying optimization problem is not computationally tractable without the use of heuristics - and incorporating them comes at the price of losing guaranteed convergence. In this paper we marry both approaches by combining their techniques and we get converging outer approximations of the attractor consisting of positively invariant sets based on convex optimization via sum-of-squares techniques. The method is easy to use and illustrated by numerical examples.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.