Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

Greedy double subspaces coordinate descent method via orthogonalization (2203.02153v2)

Published 4 Mar 2022 in math.OC, cs.NA, and math.NA

Abstract: The coordinate descent method is an effective iterative method for solving large linear least-squares problems. In this paper, for the highly coherent columns case, we construct an effective coordinate descent method which iteratively projects the estimate onto a solution space formed by two greedily selected hyperplanes via Gram-Schmidt orthogonalization. Our methods may be regarded as a simple block version of coordinate descent method which involves two active columns. The convergence analysis of this method is provided and numerical simulations also confirm the effectiveness for matrices with highly coherent columns.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)