Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 227 tok/s Pro
2000 character limit reached

Statistical visualisation for tidy and geospatial data in R via kernel smoothing methods in the eks package (2203.01686v4)

Published 3 Mar 2022 in stat.CO and stat.AP

Abstract: Kernel smoothers are essential tools for data analysis due to their ability to convey complex statistical information with concise graphical visualisations. Their inclusion in the base distribution and in the many user-contributed add-on packages of the R statistical analysis environment caters well to many practitioners. Though there remain some important gaps for specialised data, most notably for tidy and geospatial data. The proposed eks package fills in these gaps. In addition to kernel density estimation, this package also caters for more complex data analysis situations, such as density derivative estimation, density-based classification (supervised learning) and mean shift clustering (unsupervised learning). We illustrate with experimental data how to obtain and to interpret the statistical visualisations for these kernel smoothing methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)