Papers
Topics
Authors
Recent
2000 character limit reached

Is quantum advantage the right goal for quantum machine learning? (2203.01340v2)

Published 2 Mar 2022 in quant-ph

Abstract: Machine learning is frequently listed among the most promising applications for quantum computing. This is in fact a curious choice: Today's machine learning algorithms are notoriously powerful in practice, but remain theoretically difficult to study. Quantum computing, in contrast, does not offer practical benchmarks on realistic scales, and theory is the main tool we have to judge whether it could become relevant for a problem. In this perspective we explain why it is so difficult to say something about the practical power of quantum computers for machine learning with the tools we are currently using. We argue that these challenges call for a critical debate on whether quantum advantage and the narrative of 'beating' classical machine learning should continue to dominate the literature the way it does, and highlight examples for how other perspectives in existing research provide an important alternative to the focus on advantage.

Citations (119)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.