Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-Scale Time-Frequency Spectrogram Discriminator for GAN-based Non-Autoregressive TTS (2203.01080v2)

Published 2 Mar 2022 in cs.SD and eess.AS

Abstract: The generative adversarial network (GAN) has shown its outstanding capability in improving Non-Autoregressive TTS (NAR-TTS) by adversarially training it with an extra model that discriminates between the real and the generated speech. To maximize the benefits of GAN, it is crucial to find a powerful discriminator that can capture rich distinguishable information. In this paper, we propose a multi-scale time-frequency spectrogram discriminator to help NAR-TTS generate high-fidelity Mel-spectrograms. It treats the spectrogram as a 2D image to exploit the correlation among different components in the time-frequency domain. And a U-Net-based model structure is employed to discriminate at different scales to capture both coarse-grained and fine-grained information. We conduct subjective tests to evaluate the proposed approach. Both multi-scale and time-frequency discriminating bring significant improvement in the naturalness and fidelity. When combining the neural vocoder, it is shown more effective and concise than fine-tuning the vocoder. Finally, we visualize the discriminating maps to compare their difference to verify the effectiveness of multi-scale discriminating.

Citations (6)

Summary

We haven't generated a summary for this paper yet.