Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph-Assisted Communication-Efficient Ensemble Federated Learning (2202.13447v1)

Published 27 Feb 2022 in cs.LG

Abstract: Communication efficiency arises as a necessity in federated learning due to limited communication bandwidth. To this end, the present paper develops an algorithmic framework where an ensemble of pre-trained models is learned. At each learning round, the server selects a subset of pre-trained models to construct the ensemble model based on the structure of a graph, which characterizes the server's confidence in the models. Then only the selected models are transmitted to the clients, such that certain budget constraints are not violated. Upon receiving updates from the clients, the server refines the structure of the graph accordingly. The proposed algorithm is proved to enjoy sub-linear regret bound. Experiments on real datasets demonstrate the effectiveness of our novel approach.

Citations (4)

Summary

We haven't generated a summary for this paper yet.