Papers
Topics
Authors
Recent
2000 character limit reached

Split HE: Fast Secure Inference Combining Split Learning and Homomorphic Encryption (2202.13351v1)

Published 27 Feb 2022 in cs.CR and cs.LG

Abstract: This work presents a novel protocol for fast secure inference of neural networks applied to computer vision applications. It focuses on improving the overall performance of the online execution by deploying a subset of the model weights in plaintext on the client's machine, in the fashion of SplitNNs. We evaluate our protocol on benchmark neural networks trained on the CIFAR-10 dataset using SEAL via TenSEAL and discuss runtime and security performances. Empirical security evaluation using Membership Inference and Model Extraction attacks showed that the protocol was more resilient under the same attacks than a similar approach also based on SplitNN. When compared to related work, we demonstrate improvements of 2.5x-10x for the inference time and 14x-290x in communication costs.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.