Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Outsourcing Private Machine Learning via Lightweight Secure Arithmetic Computation (1812.01372v1)

Published 4 Dec 2018 in cs.CR

Abstract: In several settings of practical interest, two parties seek to collaboratively perform inference on their private data using a public machine learning model. For instance, several hospitals might wish to share patient medical records for enhanced diagnostics and disease prediction, but may not be able to share data in the clear because of privacy concerns. In this work, we propose an actively secure protocol for outsourcing secure and private machine learning computations. Recent works on the problem have mainly focused on passively secure protocols, whose security holds against passive (semi-honest') parties but may completely break down in the presence of active (malicious') parties who can deviate from the protocol. Secure neural networks based classification algorithms can be seen as an instantiation of an arithmetic computation over integers. We showcase the efficiency of our protocol by applying it to real-world instances of arithmetized neural network computations, including a network trained to perform collaborative disease prediction.

Citations (2)

Summary

We haven't generated a summary for this paper yet.