Papers
Topics
Authors
Recent
Search
2000 character limit reached

Alpha-NML Universal Predictors

Published 25 Feb 2022 in cs.IT and math.IT | (2202.12737v4)

Abstract: Inspired by the connection between classical regret measures employed in universal prediction and R\'{e}nyi divergence, we introduce a new class of universal predictors that depend on a real parameter $\alpha\geq 1$. This class interpolates two well-known predictors, the mixture estimators, that include the Laplace and the Krichevsky-Trofimov predictors, and the Normalized Maximum Likelihood (NML) estimator. We point out some advantages of this new class of predictors and study its benefits from two complementary viewpoints: (1) we prove its optimality when the maximal R\'{e}nyi divergence is considered as a regret measure, which can be interpreted operationally as a middle ground between the standard average and worst-case regret measures; (2) we discuss how it can be employed when NML is not a viable option, as an alternative to other predictors such as Luckiness NML. Finally, we apply the $\alpha$-NML predictor to the class of discrete memoryless sources (DMS), where we derive simple formulas to compute the predictor and analyze its asymptotic performance in terms of worst-case regret.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.