Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normalized Maximum Likelihood with Luckiness for Multivariate Normal Distributions (1708.01861v3)

Published 6 Aug 2017 in math.ST, cs.IT, math.IT, and stat.TH

Abstract: The normalized maximum likelihood (NML) is one of the most important distribution in coding theory and statistics. NML is the unique solution (if exists) to the pointwise minimax regret problem. However, NML is not defined even for simple family of distributions such as the normal distributions. Since there does not exist any meaningful minimax-regret distribution for such case, it is pointed out that NML with luckiness (LNML) can be employed as an alternative to NML. In this paper, we develop the closed form of LNMLs for multivariate normal distributions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.