Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Sequential asset ranking in nonstationary time series (2202.12186v3)

Published 24 Feb 2022 in cs.CE, cs.LG, and q-fin.TR

Abstract: We create a ranking algorithm, the naive Bayes asset ranker. Our algorithm computes the posterior probability that individual assets will be ranked higher than other portfolio constituents. Unlike earlier algorithms, such as the weighted majority, our algorithm allows poor-performing experts to have increased weight when they start performing well. We outperform the long-only holding of the S&P 500 index and a regress-then-rank baseline.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.