Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pareto Pairwise Ranking for Fairness Enhancement of Recommender Systems (2212.10459v1)

Published 6 Dec 2022 in cs.IR, cs.AI, and cs.LG

Abstract: Learning to rank is an effective recommendation approach since its introduction around 2010. Famous algorithms such as Bayesian Personalized Ranking and Collaborative Less is More Filtering have left deep impact in both academia and industry. However, most learning to rank approaches focus on improving technical accuracy metrics such as AUC, MRR and NDCG. Other evaluation metrics of recommender systems like fairness have been largely overlooked until in recent years. In this paper, we propose a new learning to rank algorithm named Pareto Pairwise Ranking. We are inspired by the idea of Bayesian Personalized Ranking and power law distribution. We show that our algorithm is competitive with other algorithms when evaluated on technical accuracy metrics. What is more important, in our experiment section we demonstrate that Pareto Pairwise Ranking is the most fair algorithm in comparison with 9 other contemporary algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.