Papers
Topics
Authors
Recent
2000 character limit reached

Extremes for stationary regularly varying random fields over arbitrary index sets

Published 22 Feb 2022 in math.PR, math.ST, and stat.TH | (2202.10751v1)

Abstract: We consider the clustering of extremes for stationary regularly varying random fields over arbitrary growing index sets. We study sufficient assumptions on the index set such that the limit of the point random fields of the exceedances above a high threshold exists. Under the so-called anti-clustering condition, the extremal dependence is only local. Thus the index set can have a general form compared to previous literature [3, 21]. However, we cannot describe the clustering of extreme values in terms of the usual spectral tail measure [23] except for hyperrectangles or index sets in the lattice case. Using the recent extension of the spectral measure for star-shaped equipped space [18], the $\upsilon$-spectral tail measure provides a natural extension that describes the clustering effect in full generality.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.