Illuminating the Space of Enemies Through MAP-Elites (2202.09615v2)
Abstract: Action-Adventure games have several challenges to overcome, where the most common are enemies. The enemies' goal is to hinder the players' progression by taking life points, and the way they hinder this progress is distinct for different kinds of enemies. In this context, this paper introduces an extended version of an evolutionary approach for procedurally generating enemies that target the enemy's difficulty as the goal. Our approach advances the enemy generation research by incorporating a MAP-Elites population to generate diverse enemies without losing quality. The computational experiment showed the method converged most enemies in the MAP-Elites in less than a second for most cases. Besides, we experimented with players who played an Action-Adventure game prototype with enemies we generated. This experiment showed that the players enjoyed most levels they played, and we successfully created enemies perceived as easy, medium, or hard to face.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.