Papers
Topics
Authors
Recent
2000 character limit reached

Revisiting Parameter-Efficient Tuning: Are We Really There Yet?

Published 16 Feb 2022 in cs.CL | (2202.07962v2)

Abstract: Parameter-Efficient Tuning (PETuning) methods have been deemed by many as the new paradigm for using pretrained LLMs (PLMs). By tuning just a fraction amount of parameters comparing to full model finetuning, PETuning methods claim to have achieved performance on par with or even better than finetuning. In this work, we take a step back and re-examine these PETuning methods by conducting the first comprehensive investigation into the training and evaluation of them. We found the problematic validation and testing practice in current studies, when accompanied by the instability nature of PETuning methods, has led to unreliable conclusions. When being compared under a truly fair evaluation protocol, PETuning cannot yield consistently competitive performance while finetuning remains to be the best-performing method in medium- and high-resource settings. We delve deeper into the cause of the instability and observed that the number of trainable parameters and training iterations are two main factors: reducing trainable parameters and prolonging training iterations may lead to higher stability in PETuning methods.

Citations (79)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.