Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Disentangling Domain and Content (2202.07285v1)

Published 15 Feb 2022 in cs.DC

Abstract: Many real-world datasets can be divided into groups according to certain salient features (e.g. grouping images by subject, grouping text by font, etc.). Often, machine learning tasks require that these features be represented separately from those manifesting independently of the grouping. For example, image translation entails changing the style of an image while preserving its content. We formalize these two kinds of attributes as two complementary generative factors called "domain" and "content", and address the problem of disentangling them in a fully unsupervised way. To achieve this, we propose a principled, generalizable probabilistic model inspired by the Variational Autoencoder. Our model exhibits state-of-the-art performance on the composite task of generating images by combining the domain of one input with the content of another. Distinctively, it can perform this task in a few-shot, unsupervised manner, without being provided with explicit labelling for either domain or content. The disentangled representations are learned through the combination of a group-wise encoder and a novel domain-confusion loss.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube