Mahler/Zeta Correspondence (2202.05966v1)
Abstract: The Mahler measure was introduced by Mahler in the study of number theory. It is known that the Mahler measure appears in different areas of mathematics and physics. On the other hand, we have been investigated a new class of zeta functions for various kinds of walks including quantum walks by a series of our previous work on "Zeta Correspondence". The quantum walk is a quantum counterpart of the random walk. In this paper, we present a new relation between the Mahler measure and our zeta function for quantum walks. Firstly we consider this relation in the case of one-dimensional quantum walks. Afterwards we deal with higher-dimensional quantum walks. For comparison with the case of the quantum walk, we also treat the case of higher-dimensional random walks. Our results bridge between the Mahler measure and the zeta function via quantum walks for the first time.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.