Papers
Topics
Authors
Recent
2000 character limit reached

Rare event estimation with sequential directional importance sampling (SDIS) (2202.05683v1)

Published 12 Jan 2022 in stat.CO

Abstract: In this paper, we propose a sequential directional importance sampling (SDIS) method for rare event estimation. SDIS expresses a small failure probability in terms of a sequence of auxiliary failure probabilities, defined by magnifying the input variability. The first probability in the sequence is estimated with Monte Carlo simulation in Cartesian coordinates, and all the subsequent ones are computed with directional importance sampling in polar coordinates. Samples from the directional importance sampling densities used to estimate the intermediate probabilities are drawn in a sequential manner through a resample-move scheme. The latter is conveniently performed in Cartesian coordinates and directional samples are obtained through a suitable transformation. For the move step, we discuss two Markov Chain Monte Carlo (MCMC) algorithms for application in low and high-dimensional problems. Finally, an adaptive choice of the parameters defining the intermediate failure probabilities is proposed and the resulting coefficient of variation of the failure probability estimate is analyzed. The proposed SDIS method is tested on five examples in various problem settings, which demonstrate that the method outperforms existing sequential sampling reliability methods.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.