Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Predicting Default Probabilities for Stress Tests: A Comparison of Models (2202.03110v1)

Published 7 Feb 2022 in econ.EM

Abstract: Since the Great Financial Crisis (GFC), the use of stress tests as a tool for assessing the resilience of financial institutions to adverse financial and economic developments has increased significantly. One key part in such exercises is the translation of macroeconomic variables into default probabilities for credit risk by using macrofinancial linkage models. A key requirement for such models is that they should be able to properly detect signals from a wide array of macroeconomic variables in combination with a mostly short data sample. The aim of this paper is to compare a great number of different regression models to find the best performing credit risk model. We set up an estimation framework that allows us to systematically estimate and evaluate a large set of models within the same environment. Our results indicate that there are indeed better performing models than the current state-of-the-art model. Moreover, our comparison sheds light on other potential credit risk models, specifically highlighting the advantages of machine learning models and forecast combinations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.