2000 character limit reached
Continuous bilinear maps on Banach $\star$-algebras (2202.01766v1)
Published 3 Feb 2022 in math.FA
Abstract: Let $A$ be a unital Banach $\star$-algebra with unity $1$, $X$ be a Banach space and $\phi : A \times A \to X$ be a continuous bilinear map. We characterize the structure of $\phi$ where it satisfies any of the following properties: $$a,b \in A, \,\,\, a b\star = z \, \,(a\star b=z)\Rightarrow \phi ( a , b\star ) = \phi ( z, 1 ) \, \, (\phi ( a\star , b) = \phi ( z, 1 ));$$ $$a,b \in A, \,\,\, a b\star = z \, \, (a\star b=z)\Rightarrow \phi ( a , b\star ) = \phi ( 1, z ) \, \, (\phi ( a\star , b) = \phi ( 1, z )),$$ where $z\in A$ is fixed.