Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Robust approach for comparing two dependent normal populations through Wald-type tests based on Rényi's pseudodistance estimators (2202.00982v2)

Published 2 Feb 2022 in math.ST and stat.TH

Abstract: Since the two seminal papers by Fisher (1915, 1921) were published, the test under a fixed value correlation coefficient null hypothesis for the bivariate normal distribution constitutes an important statistical problem. In the framework of asymptotic robust statistics, it remains being a topic of great interest to be investigated. For this and other tests, focused on paired correlated normal random samples, R\'{e}nyi's pseudodistance estimators are proposed, their asymptotic distribution is established and an iterative algorithm is provided for their computation. From them the Wald-type test statistics are constructed for different problems of interest and their influence function is theoretically studied. For testing null correlation in different contexts, an extensive simulation study and two real data based examples support the robust properties of our proposal.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.